Abstract
Image quality control (QC) is crucial for the accurate diagnosis of knee diseases using radiographs. However, the manual QC process is subjective, labor intensive, and time-consuming. In this study, we aimed to develop an artificial intelligence (AI) model to automate the QC procedure typically performed by clinicians. We proposed an AI-based fully automatic QC model for knee radiographs using high-resolution net (HR-Net) to identify predefined key points in images. We then performed geometric calculations to transform the identified key points into three QC criteria, namely, anteroposterior (AP)/lateral (LAT) overlap ratios and LAT flexion angle. The proposed model was trained and validated using 2212 knee plain radiographs from 1208 patients and an additional 1572 knee radiographs from 753 patients collected from six external centers for further external validation. For the internal validation cohort, the proposed AI model and clinicians showed high intraclass consistency coefficients (ICCs) for AP/LAT fibular head overlap and LAT knee flexion angle of 0.952, 0.895, and 0.993, respectively. For the external validation cohort, the ICCs were also high, with values of 0.934, 0.856, and 0.991, respectively. There were no significant differences between the AI model and clinicians in any of the three QC criteria, and the AI model required significantly less measurement time than clinicians. The experimental results demonstrated that the AI model performed comparably to clinicians and required less time. Therefore, the proposed AI-based model has great potential as a convenient tool for clinical practice by automating the QC procedure for knee radiographs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.