Abstract
Cloud systems by virtue characterize ultimate resource utilization with ever evolving user requirements facilitating adaptivity. With a scope of enhancing the QoS needs of user applications, numerous factors are considered for tunning among which Task scheduling promises to grab focus. The Task Scheduling mechanism ascertains improvement by distributing the subtasks to specific set of resources pertaining to prevailing Quality models. The work emphasizes the need for effective task scheduling and optimizing resource allocation by modelling a modified AHP (Analytical Hierarchy Process) driven approach. The proposed method guarantees the functionality in two phases pertaining to Task ranking and pipelined with Optimized scheduling algorithms resulting in maximization of resource utilization. The former phase of task ranking is aided by improved AHP with substantial usage of fuzzy clustering followed by an enhanced CUCMCA (Chimp Updated and Cauchy Mutated Coot Algorithm) algorithm for optimal resource allocation of cloud applications. The contributed model promises leveraged performance of 32% for memory usage, 33.5% for execution time, 29% for makespan and 18% for communication cost over pre-existing conventional models considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Advanced Computer Science and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.