Abstract

AbstractAiming at the problem of low global positioning precision and a large number of reflectors in the global feature map, an AGV positioning algorithm for reducing the number of reflectors is proposed. First, the global feature map is constructed by the reflectors. Next, the reflection points are obtained by lidar scanning, in which abnormal reflection points are removed through preprocessing. The local coordinates of the reflector are clustered and fitted by combining the reflection intensity of the reflector point. Then, the global coordinates of the reflectors are obtained by matching the local coordinates of the reflector with the global feature map. Finally, the initial position of the AGV is obtained through the static pose calculation algorithm, and the dynamic position of the AGV is solved by the two-point positioning algorithm. The experimental results show that, compared with the traditional algorithm, the positioning algorithm based on reflectors in this paper decreases the global position precision by 42.0% and 16.1% in the X-axis and Y-axis, respectively, and the number of reflectors used for the positioning algorithm is reduced from three or more to two.KeywordsAGVPosition calculationTwo-point positioningReflector

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.