Abstract
Personal information agents emerged in the last decade as an alternative to assist users to cope with the increasing volume of information available on the Web. In order to provide personalized assistance, these agents rely on user profiles modeling user information preferences, interests and habits. Inserted in communities of people with similar interests, personal agents can improve their assistance by gathering knowledge extracted from the observed common behaviors of single users. In this paper we propose an agent-based recommender system for supporting collaborative Web search in groups of users with partial similarity of interests. Empirical evaluation demonstrates that the interaction among personal agents increases the performance of the overall recommender system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.