Abstract
The objective of this study is to present a formal agent-based modeling (ABM) platform that enables managers to predict and partially control patterns of behaviors in certain engineered complex adaptive systems (ECASs). The approach integrates social networks, social science, complex systems, and diffusion theory into a consumer-based optimization and agent-based modeling (ABM) platform. Demonstrated on the U.S. electricity markets, ABM is integrated with normative and subjective decision behavior recommended by the U.S. Department of Energy (DOE) and Federal Energy Regulatory Commission (FERC). Furthermore, the modeling and solution methodology address shortcomings in previous ABM and Transactive Energy (TE) approaches and advances our ability to model and understand ECAS behaviors through computational intelligence. The mathematical approach is a non-convex consumer-based optimization model that is integrated with an ABM in a game environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.