Abstract

Many negotiations in the real world are characterized by incomplete information, and participants' success depends on their ability to reveal information in a way that facilitates agreement without compromising the individual gains of agents. This paper presents a novel agent design for repeated negotiation in incomplete information settings that learns to reveal information strategically during the negotiation process. The agent used classical machine learning techniques to predict how people make and respond to offers during the negotiation, how they reveal information and their response to potential revelation actions by the agent. The agent was evaluated empirically in an extensive empirical study spanning hundreds of human subjects. Results show that the agent was able (1) to make offers that were beneficial to people while not compromising its own benefit; (2) to incrementally reveal information to people in a way that increased its expected performance. The agent also had a positive effect on people's strategy, in that people playing the agent performed significantly higher than people playing other people. This work demonstrates the efficacy of combining machine learning with opponent modeling techniques towards the design of computer agents for negotiating with people in settings of incomplete information.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.