Abstract
Viscoelasticity is a crucial property of cells, which plays an important role in label-free cell characterization. This paper reports a model-fitting-free viscoelasticity calculation method, correcting the effects of frequency, surface adhesion and liquid resistance on AFM force-distance (FD) curves. As demonstrated by quantifying the viscosity and elastic modulus of PC-3 cells, this method shows high self-consistency and little dependence on experimental parameters such as loading frequency, and loading mode (Force-volume vs. PeakForce Tapping). The rapid calculating speed of less than 1ms per curve without the need for a model fitting process is another advantage. Furthermore, this method was utilized to characterize the viscoelastic properties of primary clinical prostate cells from 38 patients. The results demonstrate that the reported characterization method a comparable performance with the Gleason Score system in grading prostate cancer cells, This method achieves a high average accuracy of 97.6% in distinguishing low-risk prostate tumors (BPH and GS6) from higher-risk (GS7-GS10) prostate tumors and a high average accuracy of 93.3% in distinguishing BPH from prostate cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.