Abstract

BackgroundThe β-cell function and insulin resistance required by existing methods of classifying type 2 diabetes are not routinely adopted in most medical institutions of developing countries and regions. This study aims to propose a novel, affordable classification approach and evaluate its predictive ability for several health and mortality outcomes, including cardiovascular health (CVH), retinopathy, chronic kidney disease (CKD), nonalcoholic fatty liver disease (NAFLD), advanced liver fibrosis, and mortality caused by all-cause, cardiovascular disease (CVD), cancer.MethodsBased on 4060 participants with diabetes (aged ≥ 30 at the time of diagnosis) selected from the National Health and Nutrition Examination Survey III & 1999–2014, we proposed a novel, but simple classification approach based on the threshold of fasting plasma glucose (FPG), triglyceride-glucose (TyG) index and body mass index (BMI). We used logistic regression model to assess its predictability for diabetes complications, and Cox regression model to estimate the mortality risks.ResultsBy utilizing this approach, we characterized the subjects into four subgroups: subgroup A (obesity-related), which accounts for 37% of the total, subgroup B (age-related), 38%, subgroup C (insulin resistance), 20%, and subgroup D (severe insulin deficiency), 5%. Subjects in subgroup D had a higher risk of retinopathy, in subgroup B had a lower risk of poor cardiovascular health, nonalcoholic fatty liver disease, and advanced liver fibrosis, in subgroup C had a higher risk of all-cause mortality.ConclusionsThis study proposes an affordable and practical method for classifying patients with type 2 diabetes into different subgroups, with a view to yield a high predictability of patient outcomes and to assist clinicians in providing better treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.