Abstract

Focused ultrasound (FUS) combined with microbubble-mediated blood-brain barrier (BBB) opening (FUS-BBBO) is not only a promising technique for clinical applications but also a powerful tool for preclinical research. However, existing FUS devices for preclinical research are expensive, bulky, and lack the precision needed for small animal research, which limits the broad adoption of this promising technique by the research community. Our objective was to design and fabricate an affordable, easy-to-use, high-precision FUS device for small animal research. We designed and fabricated in-house mini-FUS transducers (∼$80 each in material cost) with three frequencies (1.5, 3.0, and 6.0 MHz) and integrated them with a stereotactic frame for precise mouse brain targeting using established stereotactic procedures. The BBB opening volume by FUS at different acoustic pressures (0.20-0.57 MPa) was quantified using T1-weighted contrast-enhanced magnetic resonance imaging of gadolinium leakage and fluorescence imaging of Evans blue extravasation. The targeting accuracy of the device as measured by the offset between the desired target location and the centroid of BBBO was 0.63 ± 0.19 mm. The spatial precision of the device in targeting individual brain structures was improved by the use of higher frequency FUS transducers. The BBB opening volume had high linear correlations with the cavitation index (defined by the ratio between acoustic pressure and frequency) and mechanical index (defined by the ratio between acoustic pressure and the square root of frequency). The correlation coefficient of the cavitation index was slightly higher than that of the mechanical index. This study demonstrated that spatially accurate and precise BBB opening was achievable using an affordable and easy-to-use FUS device. The BBB opening volume was tunable by modulating the cavitation index. This device is expected to decrease the barriers to the adoption of the FUS-BBBO technique by the broad research community.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.