Abstract

We present a simple and low-cost positioner fixture to improve the fabrication resolution of acrylic microchannels using conventional milling machines. The positioner fixture is a mechatronic platform that consists of three piezoelectric actuators assembled in a housing made of 3D printer parts. The upper part of the housing is raised by the simultaneous actuation of the piezoelectric elements and by the deformation of 3D-printed hinge-shaped supports. The vertical positioning (Z-axis) can be controlled with a resolution of 500 nm and an accuracy of ±1.5 μm; in contrast, conventional milling machines can achieve resolutions of 10 to 35 μm. Through simulations, we found that 3D-printed hinges can deform to reach heights up to 27 μm without suffering any mechanical or structural damage. To demonstrate the capabilities of our fixture, we fabricated microfluidic devices with three weir filters that selectively capture microbeads of 3, 6 and 10 μm. We used a similar weir filter design to implement a bead-based immunoassay. Our positioner fixture increases the resolution of conventional milling machines, thus enabling the fast and easy fabrication of thermoplastic fluidic devices that require finer microstructures in their design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.