Abstract
In this paper, we construct a new approach of affine scaling interior algorithm using the affine scaling conjugate gradient and Lanczos methods for bound constrained nonlinear optimization. We get the iterative direction by solving quadratic model via affine scaling conjugate gradient and Lanczos methods. By using the line search backtracking technique, we will find an acceptable trial step length along this direction which makes the iterate point strictly feasible and the objective function nonmonotonically decreasing. Global convergence and local superlinear convergence rate of the proposed algorithm are established under some reasonable conditions. Finally, we present some numerical results to illustrate the effectiveness of the proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.