Abstract

Evacuated tube transportation is an important development direction for the high-speed transportation technology of the future. However, a train running at supersonic speed in a closed tube can create an unstable aerothermal phenomenon, causing the temperature to rise sharply inside the tube and endangering the safe operation of trains and equipment. The blockage ratio is one of the key factors affecting the aerodynamic characteristics in the tube. In this paper, a 2D axisymmetric model and Delayed Detached Eddy Simulation (DDES) based on the Shear Stress Transport (SST) κ-ω turbulence model are used to study the aerothermal environment in the tube. The calculation method used in this paper was verified by a wind tunnel experiment. The aerothermal phenomenon and distribution of the flow field in the tube with different blockage ratios were compared and analysed. The results show that the aerothermal environment is significantly affected by the blockage ratio. A choking limit formed in the flow field will aggravate the aerodynamic phenomenon as the blockage ratio increases, which further deteriorates the aerothermal environment of the tube. Moreover, the existence of the choking limit, shock wave, and Mach disk make the flow field in the tube more complicated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.