Abstract

As one of the most efficient structures, carbon fiber reinforced polymer (CFRP) composite truss is typically find it applications in advanced transport engineering field, such as Altair lunar Lander, Zeppelin airship, Iso-Truss, and space truss bridges. For reasonable applications, the CFRP composite truss should consider not only the problem of the mass, but also the buckling load and thermal expansion of composite strut in the design process synthetically, which would make the numerical analysis of these composites complicated. In this paper, a modified Euler formula was proposed to calculate the bucking load of the CFRP composite. Compared with finite element analysis (FEA) results, the calculation results from the modified Euler formulas was more accurate than that from the classical Euler formulas. Unlike the influences of percentages of stacking sequence and stacking sequence on buckling load, thermal expansion coefficient was considered to be clearly related to the percentages of stacking sequence, whereas it was little related to the stacking sequence. Based on this result, an optimization method for strut combined with lower weight, lower thermal expansion and larger buckling load was presented. Firstly, multi-objective linear variable weights genetic algorithm (MLVWGA) was used to optimize the percentages of stacking sequence. The weight of strut and thermal expansion coefficient as objective, the Tsai–Wu failure criterion was the constraint condition. Subsequently, the single objective was employed to design the stacking sequence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.