Abstract
The mean flow of gas in a pipe past a side branch, closed at the far end, can excite the resonant acoustic modes of the cavity much like blowing across the top of a bottle. This aeroacoustic whistle can excite very high amplitude acoustic waves within the side branch (easily 10% of the mean pressure) at optimal gas flow rates and mean pressures within the main pipe. The aeroacoustic whistle uses no moving parts to convert part of the power in the mean flow into acoustic power. Likewise a thermoacoustic heat pump, utilizing this acoustic power, uses no moving parts to pump heat and establish (or maintain) a temperature difference across a porous medium. This new combination of an aeroacoustic sound source and thermoacoustic heat pump (with suitable thermoelectric elements) is part of an electric power generation feasibility study for natural gas wells. Reliable electrical power generation down-hole to provide electricity for sensors, communications devices or energy storage units is an important research and development goal. Experimental results will be presented that demonstrate the performance of a simple thermoacoustic heat pump when powered by an aeroacoustic sound source. [Work supported by Shell International Exploration and Production B.V.]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.