Abstract
Nongenotoxic (NGTX) carcinogens induce cancer via other mechanisms than direct DNA damage. A recognized mode of action for NGTX carcinogens is induction of oxidative stress, a state in which the amount of oxidants in a cell exceeds its antioxidant capacity, leading to regenerative proliferation. Currently, carcinogenicity assessment of environmental chemicals primarily relies on genetic toxicity end points. Since NGTX carcinogens lack genotoxic potential, these chemicals may remain undetected in such evaluations. To enhance the predictivity of test strategies for carcinogenicity assessment, a shift toward mechanism-based approaches is required. Here, we present an adverse outcome pathway (AOP) network for chemically induced oxidative stress leading to (NGTX) carcinogenesis. To develop this AOP network, we first investigated the role of oxidative stress in the various cancer hallmarks. Next, possible mechanisms for chemical induction of oxidative stress and the biological effects of oxidative damage to macromolecules were considered. This resulted in an AOP network, of which associated uncertainties were explored. Ultimately, development of AOP networks relevant for carcinogenesis in humans will aid the transition to a mechanism-based, human relevant carcinogenicity assessment that involves a substantially lower number of laboratory animals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.