Abstract

Nanopore measurement has advanced in single-molecule analysis by providing a transient time and confined space window that only allows one interested molecule to exist. By optimization and integration of the electrical and optical analysis strategies in this transient window, the acquisition of comprehensive information could be achieved to resolve the intrinsic properties and heterogeneity of a single molecule. In this work, we present a roadmap to build a unified optical and electrochemical synchronous measurement platform for the research of a single molecule. We designa low-cost ultralow-current amplifier with low noise and high-bandwidth to measure the ionic current events as a single molecule translocates through a nanopore and combine a multi-functional optical system to implement the acquisition of the fluorescence, scattering spectrum, and photocurrent intensity of single molecule events in a nanopore confined space. Our system is a unified and unique platform for the protein nanopore, the solid-state nanopore, and the glass capillary nanopore, which has advantages in the comprehensive research of nanopore single-molecule techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.