Abstract

This work develops a novel approximation for a class of superlinear stochastic Kolmogorov equations with positive global solutions. On the one hand, most existing explicit methods that work for the superlinear stochastic differential equations (SDEs), e.g. various modified Euler–Maruyama (EM) methods, fail to preserve positivity of the solution. On the other hand, methods that preserve positivity are mostly implicit, or fail to cope with the multi-dimensional scenario. This work aims to construct an advanced numerical method which is not only naturally structure preserving but also cost effective. A strong convergence framework is then developed with an almost optimal convergence rate of order arbitrarily close to 1/2. To make the arguments concise, we elaborate our theory with the generalised stochastic Lotka–Volterra model, though the method is applicable to a wide bunch of multi-dimensional superlinear stochastic Kolmogorov systems in various fields including finance and epidemiology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.