Abstract

Complementary metal-oxide-semiconductor (CMOS) image sensors can cause noise in images collected or transmitted in unfavorable environments, especially low-illumination scenarios. Numerous approaches have been developed to solve the problem of image noise removal. However, producing natural and high-quality denoised images remains a crucial challenge. To meet this challenge, we introduce a novel approach for image denoising with the following three main contributions. First, we devise a deep image prior-based module that can produce a noise-reduced image as well as a contrast-enhanced denoised one from a noisy input image. Second, the produced images are passed through a proposed image fusion (IF) module based on Laplacian pyramid decomposition to combine them and prevent noise amplification and color shift. Finally, we introduce a progressive refinement (PR) module, which adopts the summed-area tables to take advantage of spatially correlated information for edge and image quality enhancement. Qualitative and quantitative evaluations demonstrate the efficiency, superiority, and robustness of our proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.