Abstract

Sodium‐metal chloride batteries, ZEBRA, are considered one of the most important electrochemical devices for stationary energy storage applications because of its advantages of good cycle life, safety, and reliability. However, sodium–nickel chloride (Na–NiCl2) batteries, the most promising redox chemistry in ZEBRA batteries, still face great challenges for the practical application due to its inevitable feature of using Ni cathode (high materials cost). Here, a novel intermediate‐temperature sodium–iron chloride (Na–FeCl2) battery using a molten sodium anode and Fe cathode is proposed and demonstrated. The first use of unique sulfur‐based additives in Fe cathode enables Na–FeCl2 batteries can be assembled in the discharged state and operated at intermediate temperature (<200 °C). The results presented demonstrate that intermediate‐temperature Na–FeCl2 battery technology could be a propitious solution for ZEBRA battery technologies by replacing the traditional Na–NiCl2 chemistry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.