Abstract

For rapid and reliable detection of porcine epidemic diarrhea virus (PEDV) from pig clinical samples, a multiplex, real-time, reverse transcription loop-mediated isothermal amplification (mqRT-LAMP) was developed using two sets of primers and assimilating probes specific to the PEDV N gene and the Sus scrofa β-actin gene, which was used as an endogenous internal positive control (EIPC) to avoid false-negative results. The assay specifically amplified both target genes of PEDV and EIPC in a single reaction without any interference but did not amplify other porcine viral nucleic acids. The limit of detection was 10 copies/μL, 100-fold lower than that of a reverse transcription-polymerase chain reaction (RT-PCR) and equivalent to that of quantitative/real-time RT-PCR (qRT-PCR). This assay has high repeatability and reproducibility with coefficients of variation < 4.0%. The positive signal of the mqRT-LAMP assay was generated within 25 min, demonstrating advantages in rapid detection of PEDV over RT-PCR or qRT-PCR assay, which require at least 2 h turnaround times. In clinical evaluation, the detection rate of PEDV by mqRT-LAMP assay (77.3%) was higher than that of RT-PCR assay (69.7%), and comparable to qRT-PCR (76.8%) with almost 100% concordance (kappa value 0.98). The developed mqRT-LAMP assay can serve as an advanced alternative method for PEDV diagnosis because it has high sensitivity and specificity, rapidity, and reliability even in resource-limited laboratories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.