Abstract

A facile method which combines the advantages of carbon quantum dots and molecular imprinting technology to design a fluorescence molecular imprinting sensor for the high sensitivity and selective detection of chloramphenicol. The fluorescent molecule imprinted polymers are synthesized by sol-gel polymerization using carbon quantum dots as functional monomers and fluorescent sources, TEOS as crosslinkers, breaking with the traditional understanding of an additional functional monomer. Under optimal experimental, as the concentration of chloramphenicol increases, the fluorescence intensity of the fluorescence molecule imprinting sensor gradually decreases. The concentration of chloramphenicol is linear in the range of 5-100µg/L and the detection limit is 1µg/L (N/S = 3). The sensor is able to detect chloramphenicol in milk, enabling the application of real samples. The results show that this work provides an easy method to preparing fluorescent molecular imprinting sensors for the detection of chloramphenicol in milk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call