Abstract

In this series of papers, a new model has been presented for symmetrical, planar, three-layer (ABA) matrix-controlled release (MCR) devices, wherein all the advanced features of a previous monolithic MCR model have been incorporated. An extensive parametric study was performed to explore the possibilities afforded by the ABA configuration to alleviate, or even practically eliminate the undesirable features of initially very high, and subsequently continuously declining, release rates which normally characterize diffusion-limited monolithic devices. ABA matrices with uniform material properties (UMP) and layers A and B carrying different solute loads were examined in Part I. The results presented here refer to the more general case, where A and B may also represent non-uniformity in sorption and transport properties (non-UMP ABA devices). It is shown that judicious choice of two different polymeric materials for layers A and B may further improve the favorable results previously obtained for ABA–UMP matrices to the point where demands of very narrow limits for dose rate uniformity in conjunction with very high efficiency, can be met. The applicability and utility of the ABA, non-UMP model was demonstrated in a real experimental situation concerning surface-modified PVA matrices. Parameterization of the model on the basis of the experimental information provided and on literature data, resulted in successful interpretation of the effect of two different degrees of surface crosslinking on the relative rates of water uptake and proxyphylline release.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.