Abstract
Detecting the crystal system of lithium-ion batteries is crucial for optimizing their performance and safety. Understanding the arrangement of atoms or ions within the battery’s electrodes and electrolyte allows for improvements in energy density, cycling stability, and safety features. This knowledge also guides material design and fabrication techniques, driving advancements in battery technology for various applications. In this paper, a publicly available dataset was utilized to develop mathematical equations (MEs) using a genetic programming symbolic classifier (GPSC) to determine the type of crystal structure in Li-ion batteries with a high classification performance. The dataset consists of three different classes transformed into three binary classification datasets using a one-versus-rest approach. Since the target variable of each dataset variation is imbalanced, several oversampling techniques were employed to achieve balanced dataset variations. The GPSC was trained on these balanced dataset variations using a five-fold cross-validation (5FCV) process, and the optimal GPSC hyperparameter values were searched for using a random hyperparameter value search (RHVS) method. The goal was to find the optimal combination of GPSC hyperparameter values to achieve the highest classification performance. After obtaining MEs using the GPSC with the highest classification performance, they were combined and tested on initial binary classification dataset variations. Based on the conducted investigation, the ensemble of MEs could detect the crystal system of Li-ion batteries with a high classification accuracy (1.0).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.