Abstract

Accurate prediction of dynamic characteristics is quite critical to understand the strength of layered structures. Nevertheless, the existing five-unknown higher-order theories encounter difficulties to forecast accurately the dynamic response of sandwich structures. Therefore, a new five-unknown higher-order theory is developed for free vibration analysis of composite and sandwich plates, which possesses the same degree of freedom as those of other five-unknown higher-order theories. The developed model can meet beforehand interlaminar continuity conditions and the free-surface conditions of transverse shear stresses. To assess capability of the proposed model, analytical solution for such composite structures with simply-supported conditions has been presented by employing Hamilton’s principle, which is utilized for analysis of mechanical behaviors of composite and sandwich plates. Compared with the three-dimensional (3D) elasticity solutions, 3D finite element results and the results obtained from the chosen five-unknown higher-order models, the proposed model can yield accurately natural frequencies of composite and sandwich plates. Even for the thick plates, the higher-order frequencies calculated from the proposed model are in good agreement with the 3D finite element results. By studying effect of the thickness/length ratios on natural frequencies, it is found that the proposed model is adaptable to predicting natural frequencies of the sandwich plates with the thickness/length ratios between 1/4 and 1/100. In addition, some factors influencing accuracy of five-unknown higher-order models have been investigated in detail. Finally, by means of numerical analysis and discussion, some conclusions have been drawn as well, which can serve as a reference for other investigators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call