Abstract

Data fabric is an automated and AI-driven data fusion approach to accomplish data management unification without moving data to a centralized location for solving complex data problems. In a Federated learning architecture, the global model is trained based on the learned parameters of several local models that eliminate the necessity of moving data to a centralized repository for machine learning. This paper introduces a secure approach for medical image analysis using federated learning and partially homomorphic encryption within a distributed data fabric architecture. With this method, multiple users or clients (hospitals/medical data centers) can collaborate in training a machine-learning model without exchanging raw data. The approach complies with laws and regulations such as HIPAA and GDPR, ensuring the privacy and security of the data. The study demonstrates the method’s effectiveness through a case study on pituitary tumor classification, achieving a significant accuracy of 83.31%. However, the primary focus of the study is using the data fabric architecture to securely store and analyze medical images while complying with HIPAA and GDPR regulations. The results highlight the potential of these techniques to be applied to other privacy-sensitive domains and contribute to the growing body of research on secure and privacy-preserving machine learning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.