Abstract

In this article, we suggest a micro-grid methodology based on renewable energy sources (RES) in order to make more efficient use of renewable energy sources and use less energy from the traditional power grid. Off-grid, RES likes solar (generated by a photovoltaic panel) and wind can be stored in a battery and utilised to power loads. As an additional measure, a Fuzzy logic-based energy-saving method has been applied. Microgrids are used to integrate these systems in a decentralised fashion, and they provide a suite of technology solutions that facilitate communication between end users and dispersed power plants. This raises the question of how best to administer these systems. In order to guarantee that both the generating and distribution systems produce energy at low operating costs, energy management in microgrids is described as a data and monitoring network that allows the required functions. In this study, we discuss the difficulties associated with using RES and managing a microgrid. Voltage and frequency variations result from the dynamic nature of DG systems. Unpredictable dynamics result from the load's unknowability. As a result of this nonlinear dynamic, there are observable changes to the microgrid's operation. In this study, we test the efficiency of the microgrid in a variety of settings. We compare the PI controller's performance on the MATLAB/Simulink platform to that of a Fuzzy logic-based controller with various levels of complexity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.