Abstract

Endothelial cells (ECs) are permanently exposed to the blood flow and the resulting shear stress, its magnitude varying with the EC site in the blood stream. Along with other mechanical stimuli like vessel wall stretching or hydrostatic blood pressure, this shear stress modulates the endothelial cell function, morphology and gene expression. Here, we describe our improved cone-and-plate reactor that applies up to 10 dyn/cm(2) uniform wall shear stress on a defined, ring-shaped region on a culture dish. At the same time, a hydrostatic pressure of up to 195 mmHg can be applied by increasing the atmospheric pressure in the incubator box. Gas composition can be controlled additionally, used for maintaining CO2-homeostasis or inducing hypoxic conditions. For better comparability, six cone-and-plate systems can be used at the same time at different rotational velocities. The effects on cell morphology, cytoskeleton and cell alignment can be monitored during application using a laser scanning microscope. Flow conditions have been studied and a sufficient area of uniform wall shear stress could be shown. To exceed 10 dyn/cm2, we suggest an increase in medium viscosity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.