Abstract

This article presents an advanced calibration method for solving the error terms due to probe-probe leakage in an on-wafer test system. A new 12-term error model for the on-wafer test system including vector network analyzer (VNA), frequency extenders, cables/waveguides, probes, probe contact pads and probe-probe leakage is introduced. A two-step calibration process and an algorithm with four on-chip calibration standards including one undefined Thru, two pairs of undefined symmetrical Reflects such as Open-Open and Short-Short pairs, and a pair of known Match loads has been developed. In addition, an improved circuit model for the Match load is proposed for enhanced accuracy. The calibration method has been tested on a mismatched attenuator for the frequency range between 0.2 and 110 GHz, and the results are compared with numerical simulation and existing calibration methods. It is shown that the attenuator’s <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\vert S_{11}\vert $ </tex-math></inline-formula> is more consecutive and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\vert S_{21}\vert $ </tex-math></inline-formula> has been improved by up-to 1.7 dB. It is evident that the proposed calibration method has a simpler calibration process and less stringent requirements on calibration standards which are key for on-wafer system calibration at millimeter-wave and terahertz frequencies. More importantly, the new calibration method is more suitable for measurements in which DUTs have variable lengths.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call