Abstract

Abstract Interference can be a huge challenge for Nuclear Quadrupole Resonance (NQR) signal detection in real life settings. The problem is particularly challenging when interference is strong around the resonant frequency band of the targeted NQR signal (to which we refer as the NQR band). This paper first proves the beamforming characteristics of a designed two-channel echo-train (TE) data acquisition system, and then presents a novel beamforming approach which is based on the TE system and is able to cancel interference effectively within the NQR band. After interference cancellation, NQR signal detection can be done successfully by applying an ”echo train” approximate maximum likelihood (ETAML) algorithm to the residual data. The proposed algorithm is shown to be superior to previously proposed algorithms, including the classical beamforming algorithms/detectors constructed on the TE system, for detecting NQR signal polluted by interference.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.