Abstract
Face images undergo considerable amount of variations in pose, facial expression and illumination condition. This large variation in facial appearances of the same individual makes most Existing Face Recognition Systems (E-FRS) lack strong discrimination ability and timely inefficient for face representation due to holistic feature extraction technique used. In this paper, a novel face recognition framework, which is an extension of the standard (PCA) and (ICA) denoted as two-dimensional Principal Component Analysis (2D-PCA) and two-dimensional Independent Component Analysis (2D-ICA) respectively is proposed. The choice of 2D was advantageous as image covariance matrix can be constructed directly using original image matrices. The face images used in this study were acquired from the publicly available ORL and AR Face database. The features belonging to similar class were grouped and correlation calculated in the same order. Each technique was decomposed into different components by employing multi-dimensional grouped empirical mode decomposition using Gaussian function. The nearest neighbor (NN) classifier is used for classification. The results of evaluation showed that the 2D-PCA method using ORL database produced RA of 92.5%, PCA produced RA of 75.00%, ICA produced RA of 77.5%, 2D-ICA produced RA of 96.00%. However, 2D-PCA methods using AR database produced RA of 73.56%, PCA produced RA of 62.41%, ICA produced RA of 66.20%, 2D-ICA method produced RA of 77.45%. This study revealed that the developed face recognition framework algorithm achieves an improvement of 18.5% and 11.25% for the ORL and AR databases respectively as against PCA and ICA feature extraction techniques. Keywords: computer vision, dimensionality reduction techniques, face recognition, pattern recognition
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Caleb International Journal of Development Studies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.