Abstract

Multi-source Weber problem (MSWP) is a classical nonconvex and NP-hard model in facility location. A well-known method for solving MSWP is the location–allocation algorithm which consists of a location phase to locate new facilities and an allocation phase to allocate customers at each iteration. This paper considers the more general and practical case of MSWP called the constrained multi-source Weber problem (CMSWP), i.e., locating multiple facilities with the consideration of the gauge for measuring distances and locational constraints on new facilities. According to the favorable structure of the involved location subproblems after reformulation, an alternating direction method of multipliers (ADMM) type method is contributed to solving these subproblems under different distance measures in a uniform framework. Then a new ADMM-based location–allocation algorithm is presented for CMSWP and its local convergence is theoretically proved. Some preliminary numerical results are reported to verify the effectiveness of proposed methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.