Abstract

The effect of molecular weight on organic photovoltaic device performance is investigated for a series of low-band-gap (ca. 1.65 eV) poly(3-hexadecylthienylene vinylene)s (C16-PTVs) prepared by acyclic diene metathesis (ADMET) polymerization. By utilizing monomers of varying cis:trans (Z:E) content, seven C16-PTVs were prepared with a number-average molecular weight range of 6–30 kg/mol. Polymers were characterized by size-exclusion chromatography, 1H NMR spectroscopy, ultraviolet–visible spectroscopy, thermogravimetric analysis, wide-angle X-ray scattering, and differential scanning calorimetry. C16-PTVs were integrated into bulk-heterojunction (BHJ) solar cells with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), and conversion efficiency was found to increase with increasing molecular weight. This observation is attributable to an increase in polymer aggregation in the solid state and a corresponding increase in hole mobility. Finally, phase behavior and morphology of the C16-PTV:PCBM active layers ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.