Abstract

We propose an adjusted likelihood ratio test of two-factor separability (Kronecker product structure) for unbalanced multivariate repeated measures data. Here we address the particular case where the within subject correlation is believed to decrease exponentially in both dimensions (e.g., temporal and spatial dimensions). However, the test can be easily generalized to factor specific matrices of any structure. A simulation study is conducted to assess the inference accuracy of the proposed test. Longitudinal medical imaging data concerning schizophrenia and caudate morphology illustrate the methodology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.