Abstract

We present a novel cavity QED system in which a Bose–Einstein condensate (BEC) is trapped within a high-finesse optical cavity whose length may be adjusted to access both single-mode and multimode configurations. We demonstrate the coupling of an atomic ensemble to the cavity in both configurations and measure that the single-atom, -mode cooperativity exceeds unity. The atoms are confined either within an intracavity far-off-resonance optical dipole trap or a crossed optical dipole trap via transversely oriented lasers. Multimode cavity QED provides fully emergent and dynamical optical lattices for intracavity BECs, in that the process of atomic self-organization may be described as a continuous symmetry breaking phase transition resulting in the emergence of a compliant lattice with phonon-like excitations. Such systems will enable explorations of quantum soft matter, including superfluid smectics, superfluid glasses, and spin glasses as well as neuromorphic associative memory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.