Abstract

This paper develops the discrete adjoint equations for a turbomachinery RANS solver and proposes a framework for fully-automatic gradient-based constrained aerodynamic shape optimization in a multistage turbomachinery environment. The systematic approach for the development of the discrete adjoint solver is discussed. Special emphasis is put on the development of the turbomachinery specific features of the adjoint solver, i.e. on the derivation of flow-consistent adjoint inlet/outlet boundary conditions and, to allow for a concurrent rotor/stator optimization and stage coupling, on the development of an exact adjoint counterpart to the non-reflective, conservative mixing-plane formulation used in the flow solver. The adjoint solver is validated by comparing its sensitivities with finite difference gradients obtained from the flow solver. A sequential quadratic programming algorithm is utilized to determine an improved blade shape based on the objective function gradient provided by the adjoint solution. The functionality of the proposed optimization method is demonstrated by the redesign of a single-stage transonic compressor. The objective is to maximize the isentropic efficiency while constraining the mass flow rate and the total pressure ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.