Abstract
A normal adhesive contact between a flat-ended cylindrical punch with elliptical cross-section and the surface of an elastic substrate, which can be regarded as an elastic layer of finite thickness, is considered. The experimental evidence published elsewhere indicates that the initiation of detachment can occur at the ends of the minor axis of the elliptical contact area, which eventually comes into contradiction with the surface energy theory developed so far. This paradox of adhesive detachment is examined in the framework of the JKR-type model formulated in terms of the stress intensity factor (SIF) of the contact normal stress. Based on the asymptotic model for a relatively thick elastic layer, the contact SIFs at the ends of the minor axis are shown to grow with decreasing the relative layer thickness faster than those at the ends of the major axis of the initial contact area. A plausible explanation for the observed inconsistency between experiment and state-of-the-art theory is found in the effect of the nonuniform elastic deformations on the square root singularity of the contact pressure at the punch edge.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.