Abstract

Cadherin shedding affects migration and occurs in development and cancer progression. By examining the in vivo biological function of the extracellular cadherin domain (CEC1-5) independently of the shedding process itself, we identified a novel function for cadherins in convergent extension (CE) movements in Xenopus. CEC1-5 interfered with CE movements during gastrulation. Unexpectedly, CEC1-5 did not alter cell aggregation or adhesion to cadherin substrates. Instead, gastrulation defects were rescued by a membrane-anchored cadherin cytoplasmic domain, the polarity protein atypical PKC (aPKC) or constitutive active Rac, indicating that CEC1-5 modulates a cadherin-dependent signalling pathway. We found that the cadherin interacts with aPKC and, more importantly, that the extracellular domain alters this association as well as the phosphorylation status of aPKC. This suggests that CE movements require a dynamic regulation of cadherin-aPKC interaction. Our results show that cadherins play a dual role in CE movements: a previously identified adhesive activity and an adhesion-independent function that requires aPKC and Rac, thereby directly connecting cadherins with polarity. Our results also suggest that increased cadherin shedding, often observed in cancer progression, can regulate migration and invasion by modulating polarity protein activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.