Abstract

An anisotropic auxiliary differential equation finite-difference time-domain formulation is presented in detail for the time-domain study of nematic liquid crystal devices in the terahertz spectrum. The termination of the computation domain is achieved by employing a properly designed convolution perfectly matched layer. The material dispersion and dichroism of the LC complex permittivities is modeled via a modified Lorentzian function that is demonstrated to provide an accurate description for a series of state-of-the-art materials used in LC-THz technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.