Abstract
In this paper, the method of additive plasticity at finite deformations is generalized to the micropolar continuous media. It is shown that the non-symmetric rate of deformation tensor and gradient of gyration vector could be decomposed into elastic and plastic parts. For the finite elastic deformation, the micropolar hypo-elastic constitutive equations for isotropic micropolar materials are considered. Concerning the additive decomposition and the micropolar hypo-elasticity as the basic tools, an elastic–plastic formulation consisting of an arbitrary number of internal variables and arbitrary form of plastic flow rule is derived. The localization conditions for the micropolar material obeying the developed elastic–plastic constitutive equations are investigated. It is shown that in the proposed formulation, the rate of skew-symmetric part of the stress tensor does not exhibit any jump across the singular surface. As an example, a generalization of the Drucker–Prager yield criterion to the micropolar continuum through a generalized form of the J2-flow theory incorporating isotropic and kinematic hardenings is introduced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.