Abstract
Previous work based on Graph Convolutional Networks (GCNs) has shown promising performance in 3D skeleton-based motion recognition. We believe that the 3D skeleton-based motion recognition problem can be explained as a modeling task of dynamic skeleton-based graph construction. However, existing methods fail to model human poses with dynamic correlations between human joints, ignoring the information contained in the skeleton structure of the non-connected relationship during human motion modeling. In this paper, we propose an Adaptively Multi-correlations Aggregation Network(AMANet) to capture dynamic joint dependencies embedded in skeleton graphs, which includes three key modules: the Spatial Feature Extraction Module (SFEM), Temporal Feature Extraction Module (TFEM), and Spatio-Temporal Feature Extraction Module (STFEM). In addition, we deploy the relative coordinates of the joints of various parts of the human body via moving frames of Differential Geometry. On this basis, we design a Data Preprocessing Module (DP), enriching the characteristics of the original skeleton data. Extensive experiments are conducted on three public datasets(NTU-RGB+D 60, NTU-RGB+D 120, and Kinetics-Skeleton 400), demonstrating our proposed method’s effectiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.