Abstract

In this paper we introduce and analyze a fully discrete approximation for a parabolic problem with a nonlinear boundary condition which implies that the solutions blow up in finite time. We use standard linear elements with mass lumping for the space variable. For the time discretization we write the problem in an equivalent form which is obtained by introducing an appropriate time re-scaling and then, we use explicit Runge-Kutta methods for this equivalent problem. In order to motivate our procedure we present it first in the case of a simple ordinary differential equation and show how the blow up time is approximated in this case. We obtain necessary and sufficient conditions for the blowup of the numerical solution and prove that the numerical blow-up time converges to the continuous one. We also study, for the explicit Euler approximation, the localization of blow-up points for the numerical scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.