Abstract

The implicit mid-point rule is a Runge–Kutta numerical integrator for the solution of initial value problems, which possesses important properties that are relevant in micromagnetic simulations based on the Landau–Lifshitz–Gilbert equation, because it conserves the magnetization length and accurately reproduces the energy balance (i.e. preserves the geometric properties of the solution). We present an adaptive step size version of the integrator by introducing a suitable local truncation error estimator in the context of a predictor-corrector scheme. We demonstrate on a number of relevant examples that the selected step sizes in the adaptive algorithm are comparable to the widely used adaptive second-order integrators, such as the backward differentiation formula (BDF2) and the trapezoidal rule. The proposed algorithm is suitable for a wider class of non-linear problems, which are linearised by Newton’s method and require the preservation of geometric properties in the numerical solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call