Abstract
The Hamilton-Jacobi (HJ) equations arise in optimal control and many other applications. Oftentimes, such equations are posed in high dimensions, and this presents great numerical challenges. In this paper, we propose an adaptive sparse grid (also called adaptive multiresolution) local discontinuous Galerkin (DG) method for solving Hamilton-Jacobi equations in high dimensions. By using the sparse grid techniques, we can treat moderately high dimensional cases. Adaptivity is incorporated to capture kinks and other local structures of the solutions. Two classes of multiwavelets including the orthonormal Alpert's multiwavelets and the interpolatory multiwavelets are used to achieve multiresolution. Numerical tests in up to four dimensions are provided to validate the performance of the method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.