Abstract

Abstract Recently, various mathematical models have been proposed to model COVID-19 outbreak. These models are an effective tool to study the mechanisms of coronavirus spreading and to predict the future course of COVID-19 disease. They are also used to evaluate strategies to control this pandemic. Generally, SIR compartmental models are appropriate for understanding and predicting the dynamics of infectious diseases like COVID-19. The classical SIR model is initially introduced by Kermack and McKendrick (cf. (Anderson, R. M. 1991. “Discussion: the Kermack–McKendrick Epidemic Threshold Theorem.” Bulletin of Mathematical Biology 53 (1): 3–32; Kermack, W. O., and A. G. McKendrick. 1927. “A Contribution to the Mathematical Theory of Epidemics.” Proceedings of the Royal Society 115 (772): 700–21)) to describe the evolution of the susceptible, infected and recovered compartment. Focused on the impact of public policies designed to contain this pandemic, we develop a new nonlinear SIR epidemic problem modeling the spreading of coronavirus under the effect of a social distancing induced by the government measures to stop coronavirus spreading. To find the parameters adopted for each country (for e.g. Germany, Spain, Italy, France, Algeria and Morocco) we fit the proposed model with respect to the actual real data. We also evaluate the government measures in each country with respect to the evolution of the pandemic. Our numerical simulations can be used to provide an effective tool for predicting the spread of the disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.