Abstract

An adaptive smooth unsaturated bistable stochastic resonance (ASUBSR) system for bearing fault signal detection is established. Based on the problem of output saturation and poor low-frequency suppression performance of classical bistable stochastic resonance (CBSR) system, an SUBSR with unsaturated characteristics is proposed. An ASUBSR system is designed by extracting the envelope spectrum of the input signal and resampling it to satisfy the adiabatic approximation condition, combining high-pass filter to filter out low-frequency interference, and using genetic algorithm to select the optimal system parameters. Through simulations and experiments, we found that the system can effectively suppress the interference of low-frequency and high-frequency, indicates that the system performs like a band-pass filter, and the output signal-to-noise ratio is better than that of the CBSR system. The proposed ASUBSR system has great application in the field of fault detection of rolling bearings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.