Abstract

This paper describes a novel algorithm for numerical optimization, called Simple Adaptive Climbing (SAC). SAC is a simple efficient single-point approach that does not require a careful fine-tunning of its two parameters. SAC algorithm shares many similarities with local optimization heuristics, such as random walk, gradient descent, and hill-climbing. SAC has a restarting mechanism, and a powerful adaptive mutation process that resembles the one used in Differential Evolution. The algorithms SAC is capable of performing global unconstrained optimization efficiently in high dimensional test functions. This paper shows results on 15 well-known unconstrained problems. Test results confirm that SAC is competitive against state-of-the-art approaches such as micro-Particle Swarm Optimization, CMA-ES or Simple Adaptive Differential Evolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.