Abstract

SummaryIn this paper, we present a solution framework for high‐order discretizations of conjugate heat transfer problems on non‐body‐conforming meshes. The framework consists of and leverages recent developments in discontinuous Galerkin discretization, simplex cut‐cell techniques, and anisotropic output‐based adaptation. With the cut‐cell technique, the mesh generation process is completely decoupled from the interface definitions. In addition, the adaptive scheme combined with the discontinuous Galerkin discretization automatically adjusts the mesh in each sub‐domain and achieves high‐order accuracy in outputs of interest. We demonstrate the solution framework through several multi‐domained conjugate heat transfer problems consisting of laminar and turbulent flows, curved geometry, and highly coupled heat transfer regions. The combination of these attributes yield nonintuitive coupled interactions between fluid and solid domains, which can be difficult to capture with user‐generated meshes. Copyright © 2016 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call