Abstract
Similarity search is an important task engaging in different fields of studies as well as in various application domains. The era of big data, however, has been posing challenges on existing information systems in general and on similarity search in particular. Aiming at large-scale data processing, we propose an adaptive similarity search in massive datasets with MapReduce. Additionally, our proposed scheme is both applicable and adaptable to popular similarity search cases such as pairwise similarity, search-by-example, range queries, and k-Nearest Neighbour queries. Moreover, we embed our collaborative refinements to effectively minimize irrelevant data objects as well as unnecessary computations. Furthermore, we experience our proposed methods with the two different document models known as shingles and terms. Last but not least, we conduct intensive empirical experiments not only to verify these methods themselves but also to compare them with a previous related work on real datasets. The results, after all, confirm the effectiveness of our proposed methods and show that they outperform the previous work in terms of query processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.