Abstract
Generalized eigendecomposition, which extracts the generalized eigenvector from a matrix pencil, is a powerful tool and has been widely used in many fields, such as data classification and blind source separation. First, to extract the minor generalized eigenvector (MGE), we propose a deterministic discrete-time (DDT) system. Unlike some existing systems, the proposed DDT system does not need to normalize the weight vector in each iteration, since the weight vectors in the proposed DDT system are self-stabilizing. Second, we propose an adaptive algorithm corresponding to the proposed DDT system. Moreover, we study the dynamic behavior and convergence properties of the proposed DDT system and prove that the weight vector must converge to the direction of the MGE of a matrix pencil under some mild conditions. Numerical simulations show that the proposed algorithm has a better performance in terms of convergence speed and estimation accuracy than some existing algorithms. Finally, we conduct two experiments on real data sets to demonstrate its practicability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural networks and learning systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.