Abstract
In this article, we propose a semi-blind full-duplex (FD) amplify-and-forward (AF) relay system with adaptive self-interference (SI) processing assisted by independent component analysis (ICA) for low-latency and high-reliability (LLHR) Internet of Things (IoT). The SI at FD relay is not necessarily canceled as much as possible like the conventional approaches, but is canceled or utilized based on a signal-to-residual-SI ratio (SRSIR) threshold at relay. According to the selected SI processing mode at relay, an ICA-based adaptive semi-blind scheme is proposed for signal separation and detection at destination. The proposed FD relay system not only features reduced signal processing cost of SI cancelation but also achieves a much higher degree of freedom in signal detection. The resulting bit error rate (BER) performance is robust against a wide range of SRSIR, much better than that of conventional FD systems, and close to the ideal case with perfect channel state information (CSI) and perfect SI cancelation. The proposed system also requires negligible spectral overhead as only a nonredundant precoding is needed for ambiguity elimination in ICA. In addition, the proposed system enables full resource utilization with consecutive data transmission at all time and same frequency, leading to much higher throughput and energy efficiency than the time-splitting and power-splitting-based self-energy recycling approaches that utilize only partial resources. Furthermore, an intensive analysis is provided, where the SRSIR thresholds for the adaptive SI processing mode selection and the BER expressions with ICA incurred ambiguities are derived.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.